

Dr. Vishwanath Karad MIT WORLD PEACE UNIVERSITY PUNE TECHNOLOGY RESEARCH. SOCIAL INNOVATION & PARTNERSHIPS

SYLLABUS

DR VISHWANATH KARAD MIT - WORLD PEACE UNIVERSITY

FACULTY OF SCIENCE

Bachelor of Computer Applications

BCA (Science)

BATCH - 2020-21

Ms. Smita Patil

Dr. Shubhalaxmi Joshi

ROGRAMME STRUCTURE

Preamble:

At first year a course focuses on basic computer science concepts, c programming and Databases. Every trimester is having four theory subjects and a practical based on theory subjects. Along with Computer Science practical courses mini projects are included to help in building a strong foundation.

At second year for each trimester have four courses of computer science focuses on Java programming, Python, networking concepts. Practical course also includes project work which gives students hands on experience in solving a real world problem.

At third year for each trimester have four courses of computer science focuses on Android, AngularJS, Cloud Computing and recent trends in computer science and application. Practical course also includes project work which gives students hands on experience in solving a real world problem.

Intended philosophy of the syllabus is to meet following guidelines:

Give strong foundation on core Computer Science and application courses. Expose student to emerging trends in a gradual and incremental way. Prepare student community for the demands of ICT industry. Offer specialization on a chosen area. Create research temper among students in the whole process.

Dr. C. H. Patil HoS & BoS Chairmain School of Computer Science

Vision and Mission of the Programme

Vision:

To contribute to the society through excellence in scientific and knowledge-based education utilizing the potential of computer science with a deep passion for wisdom, culture and values.

Mission:

- To create knowledge, to disseminate knowledge, and to provide service to our society
- Provide quality undergraduate and graduate education in both the theoretical and applied foundations of computer science
- Train students to effectively apply this education to solve real-world problems thus amplifying their potential for lifelong high-quality careers
- To give them a competitive advantage in the ever-changing and challenging global work environment
- To achieve a distinguished position in Computer Science through innovative teaching learning methods and research.
- To develop strong fundamentals and habit of life-long learning in students to fulfill the needs of Industry

Programme Educational Objectives

- Demonstrate proficiency in the analysis of complex problems and the synthesis of solutions to those problems
- Exhibit comprehension of modern software engineering principles
- Establish a breadth and depth of knowledge in the discipline of computer science
- Prove the ability to work effectively as a team member and/or leader in an ever-changing professional environment
- To apply design and development principles in the construction of software systems of varying complexity
- To focus on 'data science and technology' and 'software technology 'to continue innovation in the future
- To prepare learners for higher positions in the IT industries
- To become successful professionals able to gain Employment and/or to be accepted into a Computer Science for post graduate programmes.

Dr. C. H. Patil HoS & BoS Chairmain School of Computer Science

Programme Specific Outcomes

- A graduate with a BCA in Computer Science and Application will have the ability to communicate computer science concepts, designs, and solutions effectively and professionally
- Apply knowledge of computing to produce effective designs and solutions for specific problems
- Identify, analyze, and synthesize scholarly literature relating to the field of computer science
- Use software development tools, software systems, and modern computing platforms.
- Project work gives students hands on experience in solving a real world problem.
- Students able to design dynamic website in the form of web programming.
- The Syllabus also develops requisite professional skills and problem solving abilities for pursuing a career in Software Industry.

Dr. C. H. Patil HoS & BoS Chairmain School of Computer Science

Programme Structure:

(a) <u>Programme duration</u>: 3 years full time.

(b) System followed: Trimester

(c) Credits System:

(i) Per Year

First Year – 36 Second Year – 38

Third Year - 38

(ii) Total in the programme - 112

(d) Credits for activities other than academics: NA

(e) Internship: NA.

(f) <u>Assessment Criteria</u>: Minimum 50% credits of first year are required to take admission in second year.

(g) Branches or Specializations: NA

(h) Mandatory Attendance to appear for examination:

It is expected on the part of the student to attend each and every Lecture, Tutorial, and Laboratory practical sessions in a course for the academic excellence. However, due to any contingencies, the attendance requirement will be a minimum of 90% of the classes scheduled/ held.

(j) Medium of Instruction and Examination: English

(k) Eligibility criteria for admission to the programme: In order to be eligible for admission to Bachelor of Computer Applications a candidate must have passed. HSC (10+2) from Science Stream with English as passing Subject with minimum 50% marks (45% for Reservation category) in aggregate. Three years Diploma of Board of Technical Education or its equivalent. Every eligible candidate has to pass Common Entrance Test to be conducted by the respective Institute/College.

Ms. Smita Patil Programme Head BCA (Science) Dr. C. H. Patil HoS & BoS Chairmain School of Computer Science

Bachelor of Computer Application 2020-21

A. Definition of Credit:-

3Hr.Lecture 1 Tutorial per week	2 credit
3HoursPractical(Lab) per week	2 credit

B. Credits:-

Total number of credits for three year undergraduate BCA Programme would be 112.

C. Structure of Credits for Undergraduate BCA Program:-

S. No.	Category	Suggested Breakup of
	Humanities and Social Sciences and Peace Programmes including Management courses	10
2	Professional core courses including Laboratory/Mini Project Work	96
3	Elective courses	06
4	Full Time Industrial Training	NA
	Total	112

D. <u>Course code and definition</u>:-

Course code	Definitions
L	Lecture
Т	Tutorial
WP	Humanities and Social Sciences and Peace Programs
SEC	Skill Enhancement Courses
BCA	Bachelor of Computer Application

E. <u>Grading Scheme:</u>

Grades & Grade Points Marks Out of 100	Grade	Grade Point
80-100	O: Outstanding	10
70-79	A+: Excellent	9
60-69	A: Very Good	8
55-59	B+: Good	7
50-54	B: Above Average	6
45-49	C: Average	5
40-44	Pass	4
0-39	Fail	0
Ab	Absent	NA

Ms. Smita Patil	Dr. C. H. Patil	Dr. Shubhalaxmi Joshi
Programme Head	HoS & BoS Chairmain	Associate Dean
BCA (Science)	School of Computer Science	Faculty of Science

Ms. Smita Patil Programme Head BCA (Science) Dr. C. H. Patil HoS & BoS Chairmain School of Computer Science

B. C. A. Science (First Year) (w.e.f. 2020) Trimester – I

Sr.				Weekly Workload, Hrs			Credits		Assessment, Marks				
No.	Course Code	Name of Course	Туре	Theory	Tutorial	Lab	Th	Lab	CCA*	LCA*	End Term Test	Total	
1		Computer Fundamentals	Core	3	1		2		50		50	100	
2		Programming in C	Core	3	1		2		50		50	100	
3		Business communication	Core	3	1		2		50		50	100	
4		Introduction to Digital Electronics	Core	3	1		2		50		50	100	
5		Lab on Programming in C	Core			3		2		50	50	100	
6	WPC1	World Famous Philosophers, Sages/Saints and Great Kings	SEC	3			2		70		30	100	
		Total :		15	04	03	10	02	270	50	280	600	

**Assessment Marks are valid only if Attendance criteria are met

* CCA: Class Continuous Assessment

* LCA: Laboratory Continuous Assessment

Weekly Teaching Hours: 22 Total Credits Trimester I: 12

Ms. Smita Patil Programme Head BCA (Science) Dr. C. H. Patil HoS & BoS Chairmain School of Computer Science

B. C. A. Science (First Year) (w.e.f. 2020) <u>Trimester – II</u>

Sr.	I	Name of Course	Туре	Weekly Workload, Hrs		Credits		Assessment Marks **				
No.	Course Code			Theory	Tutorial	Lab	Th	Lab	CCA*	LCA*	End Term Test	Total
1		Advanced C	Core	3	1		2		50		50	100
2		Database Management System	Core	3	1		2		50		50	100
3		Discrete Mathematics	Core	3	1		2		50		50	100
4		Computer Organization & Introduction to Microprocessor	Core	3	1		2		50		50	100
5		Lab on Advanced C & DBMS	Core			6		3		50	50	100
		Total :		12	04	06	08	03	200	50	250	500

Weekly Teaching Hours: 22 Total Credits Trimester II: 11 **Assessment Marks are valid only if Attendance criteria are met

* CCA : Class Continuous Assessment

* LCA : Laboratory Continuous Assessment

Ms. Smita Patil Programme Head BCA (Science) Dr. C. H. Patil HoS & BoS Chairmain School of Computer Science

B. C. A. Science (First Year) (w.e.f. 2020) <u>Trimester – III</u>

Sr.		Name of Course		Weekly Workload, Hrs			Credits		Assessment Marks**				
No.	Course Code	Name of Course	Туре	Theory	Tutorial	Lab	Th	Lab	CCA*	LCA*	End Term Test	Total	
1		Data Structures using C	Core	3	1		2		50		50	100	
2		Relational Database Management System	Core	3	1		2		50		50	100	
3		Calculus & Matrices	Core	3	1		2		50		50	100	
4		Software Engineering	Core	3	1		2		50		50	100	
5		Lab on Data Structure & RDBMS	Core			6		3		50	50	100	
6	WPC2	Study of Languages, Peace in Communications and Human Dynamics	SEC	3			2		70		30	100	
		Total :		15	04	06	10	03	270	50	280	600	

**Assessment Marks are valid only if Attendance criteria are met

* CCA : Class Continuous Assessment

* LCA : Laboratory Continuous Assessment

Weekly Teaching Hours: 25 Total Credits Trimester III: 13

Ms. Smita Patil Programme Head BCA (Science) Dr. C. H. Patil HoS & BoS Chairmain School of Computer Science

B. C. A. Science (Second Year) (w.e.f. 2020) <u>Trimester – IV</u>

Sr.	Course Code Name of	_	Name of Course Type	Weekly Workload, Hrs			Credits		Assessment Marks**				
No.	Course Code	Name of Course		Theory	Tutorial	Lab	Th	Lab	CCA*	LCA*	End Term Test	Total	
1		Advanced Data Structures	Core	3	1		2		50		50	100	
2		Web Technologies - I	Core	3	1		2		50		50	100	
3		Computer Networks - I	Core	3	1		2		50		50	100	
4		Operation Research	Core	3	1		2		50		50	100	
5		Lab on Advanced Data Structures	Core			3		2		50	50	100	
6		Lab on Web Technologies - I	Core			3		2		50	50	100	
		Total :		12	04	06	08	04	200	100	300	600	

Weekly Teaching Hours: 22 Total Credits Trimester IV: 12 **Assessment Marks are valid only if Attendance criteria are met

* CCA : Class Continuous Assessment

* LCA : Laboratory Continuous Assessment

Ms. Smita Patil Programme Head BCA (Science) Dr. C. H. Patil HoS & BoS Chairmain School of Computer Science

B. C. A. Science (Second Year) (w.e.f. 2020) <u>Trimester – V</u>

Sr.		Name of Course		Weekly Workload, Hrs			Credits		Assessment Marks**				
No.	Course Code		Туре	Theory	Tutorial	Lab	Th	Lab	CCA*	LCA*	End Term Test	Total	
1		Object Oriented Programming Concepts using Java	Core	3	1		2		50		50	100	
2		Web Technologies - II	Core	3	1		2		50		50	100	
3		Computer Networks - II	Core	3	1		2		50		50	100	
4		Operating Systems - I	Core	3	1		2		50		50	100	
5		Lab on Java	Core			3		2		50	50	100	
6		Lab on Web Technologies - II	Core			3		2		50	50	100	
7	WPC4	Philosophy of Science and Religion/Spirituality	SEC	3			2		70		30	100	
		Total :		15	04	06	10	04	270	100	330	700	

**Assessment Marks are valid only if Attendance criteria are met

* CCA : Class Continuous Assessment

* LCA : Laboratory Continuous Assessment

Weekly Teaching Hours: 25 Total Credits Trimester V: 14

Ms. Smita Patil Programme Head BCA (Science) Dr. C. H. Patil HoS & BoS Chairmain School of Computer Science

B. C. A. Science (Second Year) (w.e.f. 2020) <u>Trimester – VI</u>

Sr.	Course Code Name of Course		Туре	Weekly Workload, Hrs			Credits		Assessment Marks**				
No	Course Code	Name of Course		Theory	Tutorial	Lab	Th	Lab	CCA*	LCA*	End Term Test	Total	
1		Advanced Java	Core	3	1		2		50		50	100	
2		Python	Core	3	1		2		50		50	100	
3		Object Oriented Software Engineering	Core	3	1		2		50		50	100	
4		Operating Systems - II	Core	3	1		2		50		50	100	
5		Lab on Advanced Java	Core			3		2		50	50	100	
6		Lab on Python	Core			3		2		50	50	100	
		Total :		12	04	06	08	04	200	100	300	600	

**Assessment Marks are valid only if Attendance criteria are met

* CCA : Class Continuous Assessment

* LCA : Laboratory Continuous Assessment

Ms. Smita Patil Programme Head BCA (Science)

Weekly Teaching Hours: 22

Total Credits Trimester VI: 12

Dr. C. H. Patil HoS & BoS Chairmain School of Computer Science

B. C. A. Science (Third Year) (w.e.f. 2020) <u>Trimester – VII</u>

Sr.	Course Code Name of Course		Weekly Workload, Hrs			Credits		Assessment Marks**				
No.	Course Code	Name of Course	Туре	Theory	Tutorial	Lab	Th	Lab	CCA*	LCA*	End Term Test	Total
1		Programming in C#	Core	3	1		2		50		50	100
2		Angular	Core	3	1		2		50		50	100
3		Information Security and Audit	Core	3	1		2		50		50	100
4		Elective- I	Elective	3	1		2		50		50	100
5		Lab on Programming in C#	Core			3		2		50	50	100
6		Lab on Angular	Core			3		2		50	50	100
7	WPC5	Indian tradition, Culture and Heritage	SEC	3			2		70		30	100
		Total :		15	04	06	10	04	270	100	330	700

**Assessment Marks are valid only if Attendance criteria are met

* CCA : Class Continuous Assessment

* LCA : Laboratory Continuous Assessment

Weekly Teaching Hours: 25 Total Credits Trimester VII: 14

Ms. Smita Patil Programme Head BCA (Science) Dr. C. H. Patil HoS & BoS Chairmain School of Computer Science

B. C. A. Science (Third Year) (w.e.f. 2020) <u>Trimester – VIII</u>

Sr.	Course Code	Name of Course	_	Weekly Workload, Hrs			Credits		Assessment Marks**			
No. Course C	Course Code	Name of Course	Туре	Theory	Tutorial	Lab	Th	Lab	CCA*	LCA*	End Term Test	Total
1		Mobile Application Development-I	Core	3	1		2		50		50	100
2		ASP.NET	Core	3	1		2		50		50	100
3		Basics of Cloud Computing	Core	3	1		2		50		50	100
4		Elective –II	Elective	3	1		2		50		50	100
5		Lab on Mobile Application Development-I	Core			3		2		50	50	100
6		Lab on ASP.NET	Core			3		2		50	50	100
		Total :		15	04	06	08	04	200	100	300	600

**Assessment Marks are valid only if Attendance criteria are met

* CCA : Class Continuous Assessment

* LCA : Laboratory Continuous Assessment

Ms. Smita Patil Programme Head BCA (Science)

Weekly Teaching Hours: 25

Total Credits Trimester VII: 12

Dr. C. H. Patil HoS & BoS Chairmain School of Computer Science

B. C. A. Science (Third Year) (w.e.f. 2020) <u>Trimester – IX</u>

Sr.	Course Code	Name of Course		Weekly Workload, Hrs		Credits		Assessment Marks**				
No.	Course Code	Name of Course	Туре		Tutorial	Lab	Th	Lab	CCA*	LCA*	End Term Test	Total
1		Mobile Application Development-II	Core	3	1		2		50		50	100
2		Internet of Things	Core	3	1		2		50		50	100
3		Artificial Intelligence	Core	3	1		2		50		50	100
4		Elective-III	Elective	3	1		2		50		50	100
5		Lab on Mobile Application Development-II	Core			3		2		50	50	100
6		Mini Project	Core			3		2		50	50	100
7	WPC6	Scientific studies of mind, matter, spirit and Consciousness	SEC	3			2		70		30	100
		Total :		15	04	06	10	04	270	100	330	700

Weekly Teaching Hours: 25 Total Credits Trimester IX: 14 **Assessment Marks are valid only if Attendance criteria are met

* CCA : Class Continuous Assessment

* LCA : Laboratory Continuous Assessment

Ms. Smita Patil Programme Head BCA (Science) Dr. C. H. Patil HoS & BoS Chairmain School of Computer Science

Elective Courses:

Sr. No	Course code	Course Name	
1	Elective - I	Data Mining and Warehousing	
2	-	Agile Frameworks	
3	-	Advanced Database Management System	
4	Elective - II	Introduction to Data Science	
5		Automation Testing-I	
6		Database Administration - I	
7	Elective - III	Machine Learning	
8	1	Automation Testing II	
9		Database Administration - II	

Ms. Smita Patil Programme Head BCA (Science) Dr. C. H. Patil HoS & BoS Chairmain School of Computer Science

Syllabus

Dr. Vishwanath Karad MIT- World Peace University

FACULTY OF SCIENCE

Bachelor Of Computer Applications BCA (Trimester I)

BATCH: 2020-21

Ms. Smita Patil Programme Head BCA Dr. C. H. Patil HOS/BOS Chairman School of Computer Science

Course Code		<u>.</u>							
Course Category	Core								
Course Title	Fun	ıdam	entals of Com	puter Science					
Teaching Scheme and Credits	L	Т	Laboratory	Credits					
Weekly load hrs.	3	1		2					
Pre-requisites:									
Course Objectives:									
Students will be able to:									
1. Understand of how a computer works									
2. Learn basic concepts of Computer science and applications									
3. Prepare for future computer science courses									
Course Outcomes:			• .•						
1. Understanding generation of computers and comp	puter	orgar	nization						
2. Familiarizing with Operating system concepts									
3. Understanding types of software's									
4. Familiarizing with networking concepts									
5. Implementation of basic assemble level language									
6. Understanding of all types memory devices									
Course Contents:									
1. Introduction to computer									
2. Computer system hardware									
3. Computer Memory									
4. Interaction of User & Computer									
5. Data Communication & Computer Network									
Learning Resources:									
Reference Books:									
1. Computer Fundamentals, P. K. Sinha									
2. Computer Fundamentals, Anita Goel									
3. Computer System Architecture, 3e, Mano									
Pedagogy:	-								
Participative learning, group discussions, assignments, T	utoria	als							
Assessment Scheme:									
Class Continuous Assessment (CCA) 50 marks									
				•					
	orial		Attend	lance					
10 20 10			10						
Torm End Examination: 50 martic									
Term End Examination: 50 marks									

Ms. Smita Patil Programme Head BCA Dr. C. H. Patil HOS/BOS Chairman School of Computer Science

Syllabus:

Module	Contents		Work load in hrs.			
Wiodule		Theory	Lab	Access		
1	Introduction to Computer Introduction, Digital & Analog Computers Characteristics of Computer, History of Computers Generations of Computer Classification of Computers The Computer System, Applications of Computer	6	-	-		
2	Computer System Hardware Introduction Central Processing Unit Memory Unit Interconnecting the units of a computer Instructions Format, Set & Cycle	6	-	-		
3	Computer Memory Introduction Memory Representation Memory Hierarchy CPU Registers, Cache Memory Primary & Secondary Memory Access Types of Storage Devices Magnetic Tape & Discs, Optical Discs Using Computer Memory	6	-	-		
4	Interaction of User & Computer Introduction High Level & Low Level Languages Types of Software System Software Application Software Software Acquisition	6	-	-		
5	Data Communication & Computer Network Introduction Importance of Networking Data Transmission Media Data Transmission Across Media Data Transmission & Data Networking Computer Network Wireless Networking	6	-	-		

Ms. Smita Patil Programme Head BCA Dr. C. H. Patil HOS/BOS Chairman School of Computer Science

Course Code								
Course Categor	у		Cor	e				
Course Title			Pro	gran	nming in C			
Teaching Schem	e and Credits		L	Т	Laboratory	Credi	ts	
Weekly load hrs	5.		3	1		2		
Pre-requisites:								
1. Basic kno	wledge of mathe	matical and algori	thmic logi	cs				
Course Objectiv	ves:							
1. To unders	stand the concepts	s of "C" Program	ning.					
2. To unders	stand how to use	C programming in	a day to da	y pro	blem solving.			
3. To develop logic reasoning and logic development.								
Course Outcom	es:							
1. Understar	nding a functional	hierarchical code	e organizat	tion.				
2. Able to de	efine and manage	data structures ba	ased on pro	oblen	n subject doma	in.		
		nformation, chara		string	gs.			
	•	f complex objects						
		f object thinking v				onal mo	odel.	
	6. Understanding a concept of functional hierarchical code organization.							
7. Understanding a defensive programming concept.								
	—	ors during program	m execution	on.				
Course Content								
	ion & Language H							
	making and loops	5						
3. Arrays in								
4. Functions								
5. C Pre-pro	ocessors							
Learning Resou	rces:							
Reference Book								
1. The C Pro	ogramming Langu	age, Brian W. K	ernighan,	Denn	nis Ritchie			
	Yashwant Kanetl		U /					
3. Programm	ning in C, Balgu	ruswamy						
		pproach using C,	Forouzah	&Ce	ilberg, Thomso	n learni	ng publication	
Pedagogy:	<u> </u>							
1. Participat	ive learning, disc	ussions, algorithm	n, program	ming	g concepts, expe	eriential	learning through	
practical	problem solving,	assignments, Tuto	orial	-				
Assessment Sch	eme:							
Class Continuous	s Assessment (CC	(A) 50 marks						
Cluss Continuou		<i>(11) 50 marks</i>						
	Assignments	Presentations	Attendan	ce	Mid Term Ex	am	7	
	10	10	10		20		1	
Term End Exami	nation : 50 marks	-	- v				L	
Ms. Smita Patil	mation . 50 marks	Dr. C. H. Patil			Dr. Shub	halaxmi	Joshi	
Programme Head		HOS/BOS Chair	man		Associate			
BCĂ		School of Comp	uter Scien	ce	MIT-WP	U		

Syllabus:

	Contents	Work load in hrs.			
Module		Theory	Lab	Access	
1	Introduction & Language Fundamentals Introduction to C, history, Structure of C program Language Fundamentals – keywords, identifiers, character sets, tokens Data types, Variables and constants Qualifiers Operators, types of operators – unary, binary, relational, logical, arithmetic &Bitwise operators Operator precedence & associativity Console based I/O and related built-in I/O functions: printf(), scanf(), getch(), getchar() and basic formatting Type casting	6	-	-	
2	Decision making and loops Decision Making structure – if statement, it-else statement, Nested if-else statement, conditional operator, switch statements Loop control structures – while loop, do-while loop, for loop, nested loops Jump statements – break, continue, goto, exit	6	-	-	
3	Arrays in C Introduction to 1-D array, definition, declaration, initialization Accessing and displaying 1-D array elements Introduction to 2-D array, definition, declaration, initialization Accessing and displaying 2-D array elements Multidimensional Arrays.	6	-	-	
4	Functions in C Introduction – purpose, definition, declaration, main() function Function prototype and calling a function Variables – local and global, scope(local, global, file)and lifetime of a variable Arguments, parameters, formal & actual parameters, Function return type Call by value Arrays and functions Command line arguments Storage classes	6	-	-	
5	C Preprocessors Definition of preprocessor Macro substitution - #define File inclusion - #include Conditional Compilation - #if, #else, #elif	6	-	-	

Ms. Smita Patil Programme Head BCA Dr. C. H. Patil HOS/BOS Chairman School of Computer Science

Course Code									
Course Category	τ		Cor	e					
Course Title			Bus	iness	Communicati	on			
Teaching Schem	e and Credits		L	Т	Laboratory	Credits			
Weekly load hrs.			3	1		2			
Pre-requisites:									
Course Objective	26.								
Students will learn to:									
	it methods of Communi	cation							
	siness letters and busin		are sti	netu	red				
	techniques involved in								
	new trends in Business	composing r en	Suasi		innumeation				
Course Outcome									
	the course, student will	he able to-							
	inication skills for writi		oral n	recen	tation and worl	x in teams			
						addition to reading and			
speaking			lucs		teennologies in	addition to reading and			
	verall communication s	bills for future	001180	00.00	d your oproor				
5. Improve your o	verall communication s	skins for future (cours	es an	u your career.				
Course Contents	<u>:</u>								
Methods of Commu	inication								
Business Letters									
Persuasive Comm	unication								
Emerging Trends									
I I D									
Learning Resour									
Reference Book									
	iness Communication, Si								
2. Business commu	nication essentials: a skill	s-based approach	i, Bos	ton Pe	earson, Print boo	k, /th edition			
Pedagogy:									
	ning, problem solving, a	ssignments, Tu	torial						
Assessment Sche	6.1	0 /							
Class Continuous Assessment (CCA) 50 marks									
Assignment	Mid Term Exam	Tutorial	Att	enda	nce				
10	20	10	10						
Term End Examination : 50 marks									

Ms. Smita Patil Programme Head BCA Dr. C. H. Patil HOS/BOS Chairman School of Computer Science

Syllabus:

Module	Contents		Work load in hrs.			
Module	Contents	Theory	Lab	Access		
1	Methods of Communication Letters, Memos ,Fax, Email, Multimedia, Key stages in the communication cycle, Systems, Ten tips for successful communication, verbal and non-verbal communication, Interview related communication	8	-	-		
2	Business Letters Rules of good writing, Use of right tone, formats, Employment correspondence(Application letter, C.V, Letter of acceptance, Letter of recommendation), Internal communication -Types of Meetings, Notice and Agenda	8	-	-		
3	Persuasive Communication Sales letters, , Invitations –formal and informal , Press releases, Publicity materials, Designing of leaflets	7	-	-		
4	Emerging Trends New trends in business communication, customer Relations, Aid to correct writing	7	-	-		

Ms. Smita Patil Programme Head BCA Dr. C. H. Patil HOS/BOS Chairman School of Computer Science

Course Code									
Course Category			Cor	·e					
Course Title			Intr	oduc	tion to Digital	Electronics			
Teaching Scheme a	and Credits		L	T	Laboratory	Credits			
Weekly load hrs.			3	1		2			
Pre-requisites:									
Course Objectives	•								
		al electronics							
 To get familiar with concepts of digital electronics To learn number systems and their representation 									
	sic logic gates, Bool		K-ma	ns					
	tic circuits, combinat				al circuits				
			14 509						
Course Outcomes:									
1. Realize and simplify Boolean Algebraic assignments for designing digital circuits using KMaps									
2. Design and implement Sequential and Combinational digital circuits as per the specifications									
2. Design and implement bequential and combinational digital circuits as per the specifications									
Course Contents:									
1. Digital Logi									
2. Boolean Alg	gebra								
3. Combination	nal Circuits								
4. Sequential C	Circuits								
Learning Resource	26.								
Reference Books:	-3.								
	tals: Floyd T.M., Jain	R P Pearson F	ducati	on					
-	s: Jain R.P., Tata McC		uucati	on					
•				7	TT'11				
	and Applications: Ma			Jraw-	·H1II				
	Digital Design "3rdEdi								
	Digital Systems-Princ	ciples and Applic	cations	s" 6/e.	. PHI. New Dell	hi. 1999.(UNITS I to IV)			
Pedagogy:	1		•		n / • 1				
Participative learnin	ng, discussions, probl	lem solving, ass	ignme	ents, 1	l'utorial				
Assassment Saham	•								
Assessment Schem									
Class Continuous Assessment (CCA) 50 marks									
	Assignments	Mid Term	Atten	idanc	e Tutoria	ll I			
	10	Exam	10		10				
	10	20	10		10				
Term End Examinat	tion : 50 marks								
1									

Ms. Smita Patil Programme Head BCA Dr. C. H. Patil HOS/BOS Chairman School of Computer Science

Syllabus:

Module	Contents	Work load in hrs.			
Wiodule		Theory	Lab	Access	
1	Number Systems and Digital codes Introduction to Decimal, Binary and Hexadecimal number systems and their inter-conversions, binary addition and binary subtraction using 2's complement, Binary Coded Decimal number, Gray Codes, Gray to Binary and Binary to Gray conversion, Alphanumeric representation in ASCII codes.	8	-	-	
2	Logic gates and Boolean algebra Logic gates (NOT, AND, OR, NAND, NOR, XOR gate) with their symbol, Boolean equation and truth table. Rules and laws of Boolean algebra, De Morgan's theorem, simplification of Logic equations using Boolean algebra rules, Min terms, Max terms, Boolean expression in SOP and POS form, Introduction to Karnaugh Map, problems based on SOP (upto 3 variables), digital designing using K Map for: Gray to Binary and Binary to Gray conversion(3 bit)	8	-	-	
3	Combinational Circuits Half adder, Full adder, Half subtractor, Parallel adder, study of Multiplexer (4:1) and Demultiplexer (1:4),Encoder (Decimal to BCD encoder and 3 bit priority encoder), Decoder(3 to 8 line decoder using gates only).	8	_	-	
4	Sequential circuits Difference between combinational and Sequential circuits,RS Flip Flop using NAND gate, D Flip Flop, J K Flip ,T Flop Flip Flop, Types of Shift Register, Counters : Types of Counters, Design of 3 bit Asynchronous counter, Design of 3 bit synchronous counter.	6	-	-	
	 Tutorials: Write a C Program for Decimal to Binary Conversion. Solve Z= ∑A, B,C(1,3,6,7) using KMAP. Construct Full adder using Half Adder. Design 4:1 multiplexer using 2:1 multiplexer. Design synchronous counter for sequence: 0 → 1 → 3 → 4 → 5 → 7 → 0, using T flip-flop. 				

Ms. Smita Patil Programme Head BCA Dr. C. H. Patil HOS/BOS Chairman School of Computer Science

Syllabus

Dr. Vishwanath Karad MIT- World Peace University

FACULTY OF SCIENCE

Bachelor of Computer Applications BCA (Trimester II)

BATCH: 2020-21

Ms. Smita Patil Programme Head BCA Dr. C. H. Patil HOS/BOS Chairman School of Computer Science

Course Code									
Course Category			Cor	e					
Course Title			Adv	ance	ed C				
Teaching Scheme a	and Credits		L	Т	Laboratory	Cre	dits		
Weekly load hrs.			3	1		2			
Pre-requisites: Basi	ic concepts of C.								
Course Objectives:									
1. To familiarize the trainee with advanced concepts of computer programming and C environment									
2. To Introduce different techniques pertaining problem solving skills.									
1	s on guided practical se	essions.							
Course Outcomes:									
	ing of more advanced								
	le concept to show inp								
3. Inscribe C Programs that uses Pointer to access arrays, strings and Functions.									
4. Inscribe C Programs using pointers using dynamic memory allocation functions.									
5. Exercise Derived data types including structures and unions to solve problems.									
Course Contents:	· c								
1. File Handli	0								
	Memory Management								
3. Strings									
4. Structures									
5. Unions									
Learning Resource	28:								
Reference Books:				_					
	ramming Language, B								
	ng in C – A Practical A			· ·		cations)			
	ng with C, Byron S G					1 ~ 1			
4. A structura	l Programming Approa	ach using C, B	ehrou	izFor	ouzan& Rich	ard G1l	berg		
Pedagogy:	a aggionmanta Tuta		na l	haa	ionmonto				
_	ig, assignments, Tutor	iai, programmi	ng, la	id ass	signments				
Assessment Schem									
Class Continuous A	ssessment (CCA) 50 r	narks							
	Mid Term Exam	Presentations				orial			
	20	10	1	0	10				
	. 50 1								
Term End Examinat	tion : 50 marks								

Dr. C. H. Patil HOS/BOS Chairman School of Computer Science

Syllabus:

Module	Contents	Work load in hrs.			
WIOdule		Theory	Lab	Access	
1	 File Handling in C 1.1 Introduction – defining files 1.2 Creating files & types of files 1.3 File opening modes 1.4 Input & output operations on files using standard library 1.5 Copying ad appending files 1.6 Reading & Writing binary files Random access files – fseek, ftell, rewind 	6	-	-	
2	 Pointer & Memory Management 2.1 Concept – reference & dereference (Data model – Value model v/s Reference model 2.2 Declarations, definitions, initializations & use 2.3 Types of Pointers 2.4 Pointer arithmetics 2.5 DMA – allocation (malloc, calloc, realloc), resizing, releasing (free), memory leak, dangling pointers 2.6 Heap Memory, Stack Memory – Pitfalls 2.7 Array & Pointers – pointer to array & array of pointers 2.8 Functions & pointers – pass by reference, passing pointer to functions, returning pointer from a function, function pointer and pointer to function 2.9 Pointer to pointer 	6	-	-	
3	 Strings 3.1 Concept 3.2 Declaration, definition, initialization, format specifiers 3.3 String literals/ constants & variables – reading & writing from & to console 3.4 Importance of terminating NULL character 3.5 Strings & pointers 3.6 Array of strings & array of character pointers 3.7 String library functions 3.8 Implementations without standard library functions. 	6	-	-	
4	Structures 4.1 Concept 4.2 Declaration, definition, initialization, accessing structure members (. operator) 4.3 Array of structures	6	-	-	

Ms. Smita Patil Programme Head BCA Dr. C. H. Patil HOS/BOS Chairman School of Computer Science

	 4.4 Pointers to structures - declaring pointer to structure, accessing structure members via pointer to structure (-> operator) 4.5 Structures & functions - passing each member of structure as a separate argument, passing structure by value / address 4.6 Nested structures typedef & structures 			
5	Unions 5.1 Concept 5.2 Declaration, definition, accessing union members Difference between Structures & unions	6	-	-

Ms. Smita Patil Programme Head BCA Dr. C. H. Patil HOS/BOS Chairman School of Computer Science

Course Code						
Course Category		Cor	e			
Course Title		Data	abase	e Management	t System	
Teaching Scheme and Credits		L	Т	Laboratory	Credits	
Weekly load hrs.		3	1		2	
Pre-requisites: Basic knowledge of co	mputers					
Course Objectives:						
1. To introduce data processing	using computer	·c				
2. To explain data models used						
3. To understand creations, mar		•	data	in databases		
Course Outcomes:						
1. Understanding necessity of o	database to store	e data				
2. To do analysis of system and			and	design database	e schema	
3. To write queries using relati				•		
4. To use DDL and DML com						
5. To write SQL statements for				*		
6. Inscribe C Programs using p	ointers using dy	namic me	emory	allocation fun	ctions.	
Course Contents:						
1. Database Management System	m					
2. Entity-Relationship Model						
3. Relational Model						
4. SQL (Structured Query Lang	•					
5. Advanced Queries using SQI	<u>ـ</u>					
Learning Resources:						
Reference Books:						
1. Database System Concepts, 1	Henrv korth and	l A. Silber	schat	Z		
2. An Introduction to Database						
3. File Structure by Michael, J.						
4. Teach Yourself SQL in 14 da			ın Mo	organ		
Pedagogy:				C		
Participative learning, discussions, p	roblem solving,	assignme	nts, T	Tutorials, Lab a	ssignments	
Assessment Scheme:						
Class Continuous Assessment (CCA) 50 marks					
Assignments M	id Term exam	Presentat	tion	Attenda	nce	
10 20		10		10		
				-		
Term End Examination : 50 marks						

Ms. Smita Patil Programme Head BCA Dr. C. H. Patil HOS/BOS Chairman School of Computer Science

Syllabus:

Module	Contents	Work load in hrs.			
Wiodule	Contents	Theory	Lab	Access	
	Database Management System Drawbacks of using files to store data Purpose of database systems				
1	Definition of DBMS Comparison of File processing system & DBMS Limitation of file processing system Advantages and Disadvantages of DBMS Users of DBMS Overall system structure	5	-	-	
2	Entity-Relationship Model Entities and Entity Sets Relationships and Relationships Sets Attributes Mapping cardinalities Entity Relationship Diagram	5	-	-	
3	Relational Model Structure of relational database Terms - Relation, Tuple, Attribute, Cardinality Keys - Super Key, Candidate Key, Primary Key, Foreign Key Conversion of ER Diagram to Relational Model Conversion of relational schema to 3NF Relational Algebra Operations - Select, Project, Union, Difference, Intersection, Cartesian Product, Natural Join	7	-	-	
4	SQL (Structured Query Language) Introduction, history Of SQL Definition basics structure of SQL DDL Commands: CREATE,DROP,ALTER Data types and constraints DML Command: INSERT,UPDATE,DELETE,SELECT Simple queries	8	-	-	
5	Advanced Queries using SQL Aggregate function Set operations Order by, Group by, Having clauses SQL mechanisms for joining relations (inner joins, outer joins and their types) Nested queries	5	-	-	

Ms. Smita Patil Programme Head BCA Dr. C. H. Patil HOS/BOS Chairman School of Computer Science

Course Code						
Course Category	Cor	·e				
Course Title	Dis	crete	Mathematics			
Teaching Scheme and Credits	L	Т	Laboratory	Credits		
Weekly load hrs.	3	1		2		
Pre-requisites:	•	•				
1. Basic Knowledge of Mathematics						
Course Objectives:						
Throughout the course, students will be expected to demonstrate their understanding of Discrete						
Mathematics by						
1. Using mathematically correct terminology and	notatio	on.				
2. Constructing correct direct and indirect proofs.						
3. Applying logical reasoning to solve a variety of	probl	ems.				
<u>Course Outcomes</u> :						
Students will be able to:						
1. Demonstrate the ability to write and evaluate a p				ructure		
2. Understand the basic principles of sets and oper	ations	on se	ets.			
3. Analyze basic set equalities.						
4. Apply counting principles to determine probabil	ities.					
5. Demonstrate an understanding of relations and f				termine their properties.		
6. Demonstrate different traversal methods for tree						
7. Model problems in Computer Science using gra	phs an	d tree	es.			
<u>Course Contents:</u>						
1. Set Theory & Logic						
2. Combinatorics and Discrete Probability						
3. Relations & Functions						
4. Graph						
5. Tree						
Learning Resources:						
Reference Books:						
1. Discrete Mathematical Structures: Bernard Kolm	an Ro	hert	C Bushy Share	on Cutler Ross Nadeen-		
Ur-Rehman.	an, ne		c. Dusby, Share			
2. Discrete Mathematics And Its Applications: Rose	en					
3. Graph Theory with Applications to Engineering		mnu	ter Science Dec	Narsing		
Pedagogy:		inpu		, , , , , , , , , , , , , , , , , , , ,		
Participative learning, discussions, algorithm, progr	ammi	ng c	oncepts, exper	iential learning through		
practical problem solving, assignments						

Dr. C. H. Patil HOS/BOS Chairman School of Computer Science

Assessment Scheme:

Class Continuous Assessment (CCA) 50 marks

Assignments	Mid Term Exam	Tutorial	Attendance
10	20	10	10

Term End Examination : 50 marks

Syllabus:

Module	Contents	Work load in hrs.			
Wiodule	Contents	Theory	Lab	Access	
1	Set Theory & Logic Sets, Subsets, Operations on Sets, De Morgan's Laws Power Set of a Set, Cartesian Product, Equivalence relation, Partition of a Set, Partial order on a set	6	-	-	
2	Combinatorics and Discrete Probability Permutations & Combinations – Rule of sum and product, permutations, combinations, Algorithms for generation of permutations. Discrete Probability, Conditional Probability, Information and Mutual Information, Binomial Coefficients and combinatorial Identities	6	-	-	
3	Relations and Functions Definitions, Properties of Binary Relations, Equivalence Relations and Partitions, Partial Ordering Relations and lattices, Chains and Anti-chains Definitions, Domain, Range, One-To-One and On-To, Inverse and Composition, Pigeonhole Principle, Discrete Numeric Functions and Gathering Functions, Job Scheduling Problems	6	-	-	
4	Graphs Definition and examples of graphs, Incidence and degree Sub-graphs, Walks, Path, Circuits, Connected and disconnected graphs, Euler graphs Operations on graphs. Hamiltonian Graphs, Traveling Salesman problem Algorithms: Connectedness algorithm, Shortest Path Algorithm Product of two graphs, Complement of a graph, Self Complement of a graph	6	-	-	
5	Trees Definition and properties of trees, Pendent vertices, centre of a tree, Rooted and binary tree Spanning trees, minimum spanning tree algorithms Fundamental circuits, cutsets and cut vertices, fundamental cutsets Connectivity and separativity, max-flow min-cut theorem	6			

Dr. C. H. Patil HOS/BOS Chairman School of Computer Science

Course Code				
Course Category	Cor			
Course Title			er Organizatio ocessor	on and Introduction to
Teaching Scheme and Credits	L	Τ	Laboratory	Credits
Weekly load hrs.	3	1		2
Pre-requisites:				
Course Objectives:				0.11 1.1
1. To understand the design of the various functiona			-	
2. To explain the function of each element of a mem	iory h	nierar	chy, identify ai	nd compare different
methods for computer I/O.		_		
3. To understand the structure, function and character	eristic	cs of	Microprocesso	r
Course Outcomes:				
On completion of the course, student will be able to :				
1. Demonstrate computer organization concepts rel	ated t	to des	sign of modern	processors,
memories and I/Os.				
2. Analyze the performance of commercially available		ompu	ters.	
3. Develop logic for assembly language programmin	ng			
4. Understand the components of Microprocessor				
5. Understand computer organization concepts and s	struct	ure.		
Course Contents:				
Computer Structures				
Internal Memory				
Input/output				
Introduction to microprocessor				
Learning Resources:				
Reference Books:				
1. Computer System Architecture: Morris Mano,	Prent	ice-H	Iall.	
2. Computer Organization and architecture (6th E	Edition	n): W	illiam Stalling,	Prentice-Hall.
3. Microprocessor and Interfacing Programming a	and H	Iardw	are: Douglas H	Iall, Tata
McGraw Hill				
4. Computer Architecture and Organization by Jo	hn P	Haye	es, Tata McGrav	w Hill.
Supplementary Reading:				
1. A. Tannenbaum, "Structured Computer Organization"				
2. Patterson & Hennessy, "Computer Organization and D				
3. Ramesh S. Gaonkar, "Microprocessor, Architecture, P	rogra	mmii	ng, and Applica	ations with
the 8085", Penram International Publication.				
Pedagogy:				
Participative learning, discussions, problem solving, assi	gnme	nts, t	utorial	
Assessment Scheme:				

Ms. Smita Patil Programme Head BCA Dr. C. H. Patil HOS/BOS Chairman School of Computer Science

Class Continuou	s Assessment (0	CCA) 50 marks			
	Assignments	Mid Term Exam	Presentations	Attendance	
	10	20	10	10	
Term End				-	Examination :
50 marks Extern	al				

Syllabus:

Madula	Iodule Contents		Work load in hrs.		
Module	Contents	Theory	Lab	Access	
1	CPU Organization: Concept of Address Bus, Data Bus, Control Bus. CPU Block Diagram and Explanation of each block, Register based CPU organization, Concept of Stack & its organization, Block Diagram of ALU	6	-	-	
2	Memory Organization : Memory Architecture, Memory hierarchy, Types of Memories, Data Read/ Write process, Role of Cache memory, Virtual Memory.	8	-	-	
3	I/O Interfaces Block dig. of I/O interface, Serial communication interfaces, Asynchronous communication and synchronous communication, Parallel communication, DMA controller.	8	-	-	
4	Introduction to Microprocessor. Introduction to 8086 microprocessor, Real mode & protected mode, Processor Register, Addressing modes and opcode concept, Interrupts, Bus formats and operation, Construction of instruction word and instruction cycle and execute cycle. Concept of parallelism, parallel computer structures, concept of pipeline, instruction pipeline. Concept of RISC and CISC. Concept of Algorithms and Flowcharts (Definitions, Symbols, Characteristics)	8	-	-	
	 Tutorial: What is Virtual Memory? Explain Virtual memory organization. What is Parallel Processing? Explain Instruction Pipelining method of parallel processing. Explain Register organization of CPU. Draw and Explain functional Block diagram of 8086 Microprocessor Explain block diagram of ALU. Explain function table for 2 bit data. 				

Dr. C. H. Patil HOS/BOS Chairman School of Computer Science

Dr. Vishwanath Karad MIT- World Peace University

FACULTY OF SCIENCE

Bachelor of Computer Applications BCA (Trimester III)

BATCH: 2020-21

Ms. Smita Patil Programme Head BCA Dr. C. H. Patil HOS/BOS Chairman School of Computer Science

Course Code							
Course Category	Cor	e					
Course Title	Dat	a St	ructures usir	ng C			
Teaching Scheme and Credits	L	Т	Laboratory	Credits			
Weekly load hrs.	3	1		2			
Pre-requisites:							
1. Knowledge of Arrays, Structure and Functions							
Course Objectives:1. To introduce the fundamental concept of data str	ucture	es					
2. To emphasize the importance of data structures i			ng and impleme	enting efficient			
algorithms. In addition,							
3. To develop effective software engineering practi	ce, en	nphas	izing such prin	ciples as decomposition,			
Procedural abstraction and software reuse.							
Course Outcomes: After completing this course, a student will be al	ole to:						
After completing this course, a student will be able to: 1. Describe how arrays, records, linked structures, stacks, queues, trees, are represented in memory and used by algorithms 2. Describe common applications for arrays, records, linked structures, stacks, queues, and trees 3. Write programs that use arrays, records, linked structures, stacks, queues, and graphs 4. Demonstrate different methods for traversing trees 5. Compare alternative implementations of data structures with respect to performance 6. Compare and contrast the benefits of dynamic and static data structures implementations 7. Describe the concept of recursion, give examples of its use, describe how it can be implemented using a stack 8. Design and implement an appropriate hashing function for an application Course Contents: 1. Introduction to Data Structures 2. Stack and Queue							
3. Linked List							
4. 11665							
 4. Trees Learning Resources: Reference Books: Fundamentals of Data Structures, . Horowitz and S. Sahani Introduction to Data Structures in C, Ashok N. Kamthane Data Structure Using C, Radhakrishanan and Shrivastav Data Structure Using C, Bandopadhyay & Dey(Pearson) 							

Ms. Smita Patil Programme Head BCA Dr. C. H. Patil HOS/BOS Chairman School of Computer Science

<u>Pedagogy</u>: Participative learning, discussions, assignments, tutorials, programming assignment

Assessment Scheme:

Class Continuous Assessment (CCA) 50 marks

	Assignments	Mid Term Exam	Attendance	Tutorial		
	10	20	10	10		
Term End Examination : 50 marks						

Syllabus:

Module	Contents	Wo	rk load in	ıd in hrs.	
Module		Theory	Lab	Access	
1	Introduction to Data Structures 1.1 Self –referential structure 1.2 Data Structures 1.3 Primitive and Non-Primitive Data Structures 1.4 Linear and Non-linear Structures. 1.5 Linear Lists	4	-	-	
2	 Stack and Queue 2.1 Stack-Static and Dynamic Representation, Operation, Application of Stack, Evaluation of postfix expression, Infix to postfix 2.2 Queue -Static and Dynamic Representation, Operation, Priority Queue, Circular Queue (Implementation) 2.3 Application of Queue 	8	-	-	
3	 Linked List 3.1 Representation –Static & Dynamic 3.2 Singly Linked List Creation, Insertion (Begin, Middle, End), Printing, deleting (Begin, Middle, End) Traversing. 3.3 Doubly Linked list (Creation, Deletion) 3.4 Circularly Singly Linked list (Creation, Deletion) 	8	-	-	
4	Trees 4.1 Definition 4.2 Terminology 4.3 Representation 4.4 Binary tree 4.5 Representation(Both) 4.6 Binary Tree Traversal Inorder, Preorder, Postorder 4.7 Binary Search Tree (Implementation) 4.8 Heap 4.9 AVL / Height Balanced tree	10	-	-	

Ms. Smita Patil Programme Head BCA

Dr. C. H. Patil HOS/BOS Chairman School of Computer Science

Course Code					
Course Category Core					
Course Title	Rel	ation	al Database M	anagement System	
Teaching Scheme and Credits	L	Т	Laboratory	Credits	
Weekly load hrs.	3	1		2	
Pre-requisites: Basic knowledge of database management s	ystem				
Course Objectives:					
1. To understand use of stored functions, cursors, v	iews	and ti	iggers to inters	act with databases	
2. To introduce design of relational database		ana u	inggers to intere	let with databases	
3. To introduce concepts of database transactions ar	nd the	ir cor	current execut	ion	
4. To introduce techniques for recovering data back					
Course Outcomes:	unter	syste			
1. To write stored functions, cursors, views and trig	gers t	o inte	ract with datab	ases	
2. To normalize the database in different normal for	0	0 1110			
3. To derive primary keys for relations by applying		ithm			
4. To analyze transactions and prepare concurrent s	•				
5. To solve problems related to data recovery after s			ıre		
Course Contents:					
1. Advanced SQL					
2. Relational Database Design					
3. Transactions					
4. Crash Recovery					
· ·					
Learning Resources:					
Reference Books:	0.11	1			
1. Database System Concepts, Henry korth and A.		schat	Z		
2. An Introduction to Database System, Bipin Desa					
3. File Structure by Michael, J. Folk, Greg, Riccard		14			
4. Teach Yourself SQL in 14 days, Jeff Parkins and	a Brya	an Mo	organ		
Pedagogy:		uta t	stanial		
Participative learning, discussions, problem solving, assi	Ignme	nts, t	utorial		
Assessment Scheme:					
Class Continuous Assessment (CCA) 50 marks					
Assignments Mid Term Exam	Atter	ndanc	e Tuto	orial	
10 20	10		10		
Term End Examination: 50 marks					

Dr. C. H. Patil HOS/BOS Chairman School of Computer Science

Syllabus:

Module	Contents	Work load in hrs.		hrs.
Wiodule		Theory	Lab	Access
1	Advanced SQL Controlling the program flow, conditional statements, loops Views, Stored Functions Handling errors and exceptions Cursors, Triggers	9	-	-
2	Relational Database Design Pitfalls in Relational-Database Functional dependencies Closure of Functional dependencies (F+) Closure of an Attribute set Algorithm to derive a Primary Key for a relation and examples Concept of Decomposition Desirable Properties of Decomposition 7.5 Concept of Normalization Normal forms : 1NF, 2NF, 3NF, BCNF	8	-	-
3	Transactions and concurrency control mechanism Describe a transaction, properties of transaction, state of the transaction. Executing transactions concurrently associated problem in concurrent execution. Schedules types of schedules concept of Serializability, Precedence graph for Serializability. Ensuring Serializability by locks, different lock modes, 2PL and its variations. Basic timestamp method for concurrency, Thomas Write Rule. Locks with multiple granularity, dynamic database concurrency (Phantom Problem). Timestamps versus locking. Deadlock handling methods Detection and Recovery (Wait for graph). Prevention algorithms (Wound-wait, Wait-die)	9	-	
4	Crash Recovery Failure classification Recovery concepts Log base recovery techniques (Deferred and Immediate update) Checkpoints Recovery with concurrent transactions (Rollback, checkpoints, commit) Database backup and recovery from catastrophic failure. Shadow paging	4	-	-

Ms. Smita Patil Programme Head BCA Dr. C. H. Patil HOS/BOS Chairman School of Computer Science

Course Code						
Course Category	Core					
Course Title		Cal	culus	& Matrices		
Teaching Scheme and Credits		L	T	Laboratory	Credits	
Weekly load hrs.		3	1		2	
Pre-requisites:						
Course Objectives:						
	elationship between t	he der	ivativ	ve and the defir	nite integral as expressed	
	Fundamental Theorem					
2. To formulize the pro-						
<u>Course Outcomes:</u>						
1. Describe the conce	ots and applications of	of deri	vativ	es and higher o	order derivatives	
2. Understand the idea						
3. Acquire the concep					ules	
4. Develop competence	U 1					
Course Contents:	<u>rj in apprjing ine rae</u>	n or p				
1. Matrices						
2. Differential calculus						
3. Differential equations						
4. Integral calculus						
Learning Resources:						
Reference Books:						
1. A Textbook of Matrices, Sl	•					
2. Differential Calculus, Shar						
3. Intergral Calculus, Shanti						
4. A Textbook of Business Ma	thematics, Dr. Padn	naloch	an Ha	azarika, S. Cha	n	
Pedagogy:						
Participative learning, discussion		ammiı	ng co	oncepts, exper	riential learning through	
practical problem solving, assignme	ents					
Assessment Scheme:						
Class Continuous Assessment (CCA	A) 50 marks					
Assignments	Mid Term Exam	Atte	ndano	ce	Tutorial	
10	20	10			10	
				L		
Term End Examination : 50 marks	Term End Examination : 50 marks					

Ms. Smita Patil Programme Head BCA Dr. C. H. Patil HOS/BOS Chairman School of Computer Science

Syllabus:

Module	Contents	Wo	k load in hrs.	
Module	Contents	Theory	Lab	Access
1	 MATRICES 1.1 Definition, Types of Matrices 1.2 Rank of a Matrix. Condition for consistency, Nature of the general solution. System of linear homogeneous equations, Gauss elimination Method 1.6 System of linear non-homogeneous equations. 1.3 Eigen values, Eigen vectors and the characteristic equation of a matrix. 1.4 Cayley Hamilton theorem and its use in finding inverse of a matrix. 	8	-	-
2	DIFFERENTIAL CALCULUS 2.1 Differentiability 2.2 Derivatives of Composite functions and Chain Rule 2.3 Derivatives of Inverse Trigonometric functions 2.4 Exponential and logarithmic functions 2.5 Logarithmic differentiation 2.6 Second Order Derivative	8	-	-
3	 DIFFERENTIAL EQUATIONS 4.1 Basic concepts like order and degree of Differential Equations 4.2 General and Particular Solution of a Differential Equation 4.3 Formation of a Differential Equation whose general solution is given 4.4 Method for solving first order and first degree Differential Equation. 	7	-	-
4	INTEGRAL CALCULUS 3.1 Methods of Integration 3.2 Integration by parts 3.3 Definite Integral 3.4 Integration by Substitution 3.5 Integrating with inverse trigonometric functions	7	-	-

Ms. Smita Patil Programme Head BCA Dr. C. H. Patil HOS/BOS Chairman School of Computer Science

Course Code							
Course Category	Core						
Course Title	Software	Engine	ering				
Teaching Scheme and Credits	L	Т	Laboratory	Credits			
Weekly load hrs.	3	1		2			
<u>Pre-requisites</u> : Basic knowledge of computer	system.			·			
Course Objectives:							
 To introduce basics of System Analysis To develop broad understanding of the 		actura	anainaanina				
 To develop broad understanding of the To explain importance and working of 				nmant process			
4. To introduce an agile environment for s				opinient process			
4. To introduce an agric environment for s		lopmen					
Course Outcomes:							
1. To the analysis and design of complex s	systems						
2. To apply software engineering principle	es and technio	ques					
3. To develop, maintain and evaluate large	e-scale softwa	are syste	ems				
4. To produce efficient, reliable, robust an	d cost-effect	ve softv	vare solutions				
5. To work as an effective member or lead	ler of softwar	e engine	eering teams				
6. To understand and meet ethical standar	ds and legal r	responsil	bilities				
Learning Process:							
Reference Books							
1. Software Engineering Fundamentals, O	xford Indian	Reprint,	, 2012, Ali Behfor	roz, Frederick J.			
Hudson				2000			
2. Software Engineering Concepts, Richar							
3. Fundamentals of Software Engineering			arning Pvt. Ltd. 20	109			
	4. System Analysis and Design: Ellias M. Awad (Galgotia)						
5. Software Engineering–A Practitioner's				n (Mc-Graw Hill)			
6. Analysis and Design of Information System	stems: James	A. Senr	n (McGraw Hill)				
Pedagogy:							
Participative learning, Case study							

Ms. Smita Patil Programme Head BCA Dr. C. H. Patil HOS/BOS Chairman School of Computer Science

Assessment Scheme:

Class Continuous Assessment (CCA) 50 marks

Assignments	Mid Term Exam	Attendance	Case Study
10	20	10	10

Syllabus:

Module	Contents	Wo	rk load in	load in hrs.	
Module	Contents	Theory	Lab	Access	
1	System Concepts System Definition Characteristics of a System : Organization, Subsystem, Interaction, Interdependence, Integration, Central objective, Standards, Black-box Elements of a system Outputs, Inputs, Processor(s), Control, Feedback, Environment, Boundaries, Interface Physical & Abstract Systems Open & Closed Systems, Computer-based Systems : MIS ,DSS	5	-	-	
2	Software and Software Engineering The Nature of Software Defining Software Software Application Domains Legacy Software Software Engineering, Software Engineering Practice The Software Process The Essence of Practice General Principles, Software Myths	8	-	-	
3	System Development Life Cycle (SDLC) Introduction Activities of SDLC Preliminary Investigation Determination of System Requirements Design of System Development of Software System Testing (Unit Testing, Integration testing, System Testing) System Maintenance	8	_	-	
4	Process Models A Generic Process Model Prescriptive Process Models: The Waterfall, Incremental model Evolutionary Process Models: Prototyping, Spiral Model	4	-	-	

Ms. Smita Patil Programme Head BCA Dr. C. H. Patil HOS/BOS Chairman School of Computer Science

	Concurrent Models		
5	An Agile View of ProcessWhat is an Agility?What is an Agile Process?The Politics of Agile DevelopmentHuman FactorsAgile Process Models: Extreme Programming, Adaptive SoftwareDevelopment, Dynamic Systems Development Method	5	

Ms. Smita Patil Programme Head BCA Dr. C. H. Patil HOS/BOS Chairman School of Computer Science